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Abstract 7
The tunneling current (ac and dc) between two charge density wave (CDW) phase
domains in the standard geometry of a point contact is calculated. Temperature
Green's function for pure CDW and the transfer Hamiltonian of Artemenko and
Volkov are used to compute the current analytically. Extension to the more re-
alistic pseudo-gap structure is achieved by using Sadovskii's method of re-
summing all diagrams for the one-particle Green's function - including the
crossing diagrams - which carry a momentum Q=2kF. The method results in
averages over effective gap values which are carried out analytically. The
corresponding results for Reo(w) are displayed. They show absorption also
inside the gap region.

Theory

I consider a tunnel junction:. two CDW phase domains separated by an insulating
layer. I calculate the current in this quasi one-dimensional system by the
method of the transfer Hamiltonian used by Artemenko and Volkov [1] for the
same problem. Thus, I write the Hamiltonian i of the system as ﬁ=RL+RR*ﬁT'
KO+HT , where KL and KR are the left and right hand side Hamiltonians for the
two pure CDW phase domains. HT is the transfer Hamiltonian. To find the current
in the system I calculate the change in the number of particles in the left

part of the system. In the present case, ﬁT [2] can be written as

iy = k’g’o_g;(k){'l'o T Tl () +oeie _ S )
where T, T'Q=TQcos(6) and T"Q=—TQsin(6) are constant transfer matrix elements
without (To) and with "Umklapp" (TQ) from one of the Fermi planes to the other,
involving the wave vector Q=2kF of the CDW. In (1), § is the phase difference
between these direct and backscattering transfer matrix elements. g;(k) is
defined as g;(k)=(3;(0/2+k),6;(~Q/2+k)) for the left hand side of the junction,
gﬂ(q) is defined for the right hand side in an analogous way, and [k, ]a] << Q.
The t's are Pauli spin matrices and ¢ denotes the spin state of the electron.
Now I introduce the temperature Green's function Go(k,T) for the pure CDW phase
domain, e.g.‘for the left hand side, Go(k,r)=— <TT(§o(k,r) 1) ;ﬂ(k,o))>O . Here,
TT implies imaginary time ordering. The symbol © denotes the dyadic product.
The o's are in the interaction representation with imaginary time and < ... >

0
is the equilibrium average. The Fourier transform Go(k,ivm) of Go(k,r) is given
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in the mean field approximation by Go(k,ivm)=(ivm+g(k)t3*51*+5*1_)/((ivm)2
-£2(k)-|&|?), wnere v =(w/fig)(2m+1) denotes the Fermi frequencies. In
Golkiiv ), e(k)= €(Q/2+k)= ~€(-Q/2+k) is the nesting condition and 2|a| is the
width of the energy gap in the quasiparticle spectrum. The matrix T, is defined
by Ti=(1/2)(11tiT2). In order to calgylate the tunneling current I use the
linear response theory with respect to HT'
DC Response

I consider a tunneling junction where the left hand side is grounded and the
right hand side is held at fixed voltage Vext' Consequently, in addition to the
Hamiltonian for the pure CDW phase, I have an extra term on the right hand side

which is given by H =-e V ﬁ -.. The .external perturbation ﬁex

ext 0 ext t .
duces a phase in the interaction representation of gﬂ(q): go(q) + gv(q,t,¢)=

exp(i¢t)§ﬂ(q,t),.where ¢ is defined by ¢=(eo/ﬁ)vex

mereley pro-

. In the formula for the
linear response I consider only terms which are bilinear in a,a* and B,B+. This
is a consequence of the fact that RL,R conserves the number of particles. With
respect to the tunneling current the phase exp(i%t) appears in . front of
equilibrium averages, which thus are invariant under a time shift. To deal with
these averages I introduce the temperature Green's function by going from the

real to imaginary time. After some transformations [2], I obtain the time inde-
pendent tunneling current

©

2 *re 2,02 CDW, ynCDW/ ,° I8, 1]
I >(¢) = (TS+TS) Jdm(f(m)—f(w+$))n (NP (wre) {1 + @ ———1}, (2)

-0

where f(w), NCDw(w) and ¢ are the Fermi distribution function, the density of
states in the pure CDW phase domain and the phase of the order parameter A,
respectively. In (2), o is defined by aa(Tg/(Tg+Té))cos(@b—¢R). The formula (2)
coincides with the result in [1] and shows in addition to the usual term in the
current a term proportional to cos(¢L—¢R).

Photon - Assisted Tunneling

In the previous section I made the restriction that the voltage across the
junction should be constant. Now I assume a sinusoidal voltage vext(t)=vext
+u-cos(mextt) across the junction, which leads to a time dependent tunneling
current. For small ac excitation, i.e. e.u << ﬁmex

bias $=0, I obtain [2]

and in the absence of dc

0 t’

e u e.u

<I >(t) = ——I (w__ )cos(w . t) + ——I
opP 1" "ext ext 2
Bug vt Ruext

(mext)sm(wextt) : (3)
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Il(w) and Iz(w) are related by the Kramers-Kronig relations. It is well known
that there is a scaling relation between I1(w) and the dc current (2) <IOP>($):
I1(w)=<lop>(6=w). The real part of the conductivity is given by Reo(w)=
(eOD/ﬁA)(Il(w)/m)’ where D and A are the the thickness and contact area of the
junction, respectively. Note that again there is a scaling relation between
Reo(w) and the dc conductivity odc(i): Reo(m)=odc($=w). As usual, Reo(w) and
Imo{w) are related by the Kramers-Kronig relations.

Extension to Pseudo-Gap Structure

Extension to the more realistic pseudo-gap structure is achieved by using
Sadovskii's [3] method of resumming a class of diagrams - including the
crossing diagrams - for the one-particle Green's function. The diagrams have an
alternating sequence of free Green's functions {1‘.\)m—§(p)}‘1 and [ivm+E(P)}-1.

where p=k and an alternating sequence of vertices with incoming or outgoing

Fl
interaction lines carrying a momentum Q or -Q. The method results in averages

/25 yith Sadovskii's distribution function

over effective gap values A » g
Ps(g)=exp(-g). These averages are carried out analytically in [2] for identical

CDW systems and T=0. The real part of the conductivity is

|w/a|
_ sgn(w) .
Reo(w) = do || j axx® (x=w]/|3])%L F (1,372, -x%)
11
0
()
<2y T 2 712
| (L3/2, -l /[8)) - gp e F(3/2,2,-x7)« F (3/2,2,-(x-}u|/[8])9)].
1 1 1

Here, F designates the confluent hypergeometric function. In (4), Oy denotes
1

1
1.5 1.1 . ) the conductivity above the cri-

tical temperature. The real part

-of the the averaged conductivity

A

2 1

N is displayed vs. scaled frequency.

o .

v The real part of conductivity
05 shows absorption also inside the

gap region.
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