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1 Introduction

Recent experiments on granular superconducting films! have revealed
a surprising feature, namely that the low temperature properties of the
films seem to be determined solely by the normal state sheet resistance (per
square); more precisely, the films become superconducting for T — 0 only
when the normal state resistance is less than a critical value of ~ 6.5k(l.
Since, in a single Josephson junction shunted by a resisitor R,, a diffusion-
localization transition is found® (at T = 0) at the critical value RS = R, =
wh/2e® ~ 6.45kQ, it has been speculated that the appropriate generalization
of the single junction model to a network could provide an explanation of
the experimental results. However, I find it difficult to imagine how shunt
resistors can be motivated microscopically for a granular film.

Nevertheless, it is a challenging theoretical question, as an extension of
the single junction result,? to.inquire about the zero temperature properties
of an array or a chain of identical Josephson junctions,3—¢ each of which
is shunted by the same R,. In particular, the phase diagram for chains is
highly controversial.#=¢ In this note, I do not wish to discuss specific results
for the phase diagram. Rather, I wish to illuminate some aspects of the
underlying theoretical formulation, which essentially consists of transforming
the standard model (given in terms of an Euclidean action) to a system of
vortices (or charges) interacting via a highly anisotropic interaction — on
this aspect, Refs. 4-6 agree. Using methods developed in the investigation
of the quantum dynamics of vortices in a network of ideal (i.e. unshunted)
junctions,”® it is straightforward (avoiding the Villain transformation and
the discretization of the time variable) to confirm the basic expression for
the interaction between charges.*~® However, in this approach, an ambiguity

remains concerning the continuum limit, which is explained and discussed
below.

2 The Model

The Euclidean action describing the quantum statistical properties of a
chain of dissipative Josephson junctions is given by S = S, + Sp, where

So = Z/dr[%mcp? — Ejcos(p; — pj-1)] . (1) .
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Here ¢; denotes the order parameter phase on the j-th superconducting
grain, E; is the Josephson coupling energy, and m = h%cy/4e?, where ¢, is the
ground capacitance of a grain. In addition, the dissipative part Sp is given
by

Sp =-;— Z/d"rd*r' A,(r — 'r')[(tpj —pi-1)r — (p; — ‘Pj—l)r']2
j (2)
=— %zj:/drd’r'B,(‘r - T')(¢j - ¢j—1)r(¢j = Pj-1)r

where I used subscripts to indicate the time argument. The second form in
(2), which I call choice II, is obtained by a partial integration from the first
one (choice I). Accordingly, with a, = Ry/R,, one has

Ay(7) = (ha, /7). 77%, By(7) = (he,/n*) -In]r]| 3)
and for the Fourier transforms:
A,(w) = —hayfwl/m, B,(w) = A,(w)/w® . (4)
In the continuum limit, in which ¢; is replaced by ¢(z), and
w;i—pi-1 = &p(z) € 1, (5)

it is convenient to employ the obvious (after expansion of the cosine) space-
time symmetry of Sy and define y = c¢r, where ¢? = E;/m. Then S, is given
by

So = ET/dzr (V(p)z . (6)

On the other hand, being a bit careful about when the continuum limit is
taken, Sp is given by

SL = % / dedydy' A,(y — y')[azso(z,y) —~ a,so(rv,y‘)]2 ; (M
SH = —% / dzdydy' B,(y — ') [0:0,¢(z,y)] [8:0, ¢(z,y")] - (8)

Clearly, both forms are equivalent if space and time derivatives can be inter-
changed. However, this is not the case for the vortex solution to be discussed
below.

3 The Vortex (Charge) Picture

The transformation to the vortex picture is achieved by noting that,
since the action is quadratic in the phase, it is sufficient to study special
solutions of the equation of motion, §5/§p = 0. I use the following ansatz
(see e.g. Refs. 7 and 8):

¢p=(PV+<eb_' ; (e":zj‘:ejarctan::zj 9)
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- where 7; = (zj,y;) denotes the center of the j-th vortex, and e; = +1 its
vorticity. Since the equation of motion is linear, the spin wave part ¢° is
readily determined in Fourier representation. Explicitly, define
§So/bp=Lo*p; 6Splép=Lpxp; L=Ls+Lp , (10)
and note that £ *x ¢ = 0; thus
S =—L1xLpxpY¥ . (11)

A brief inspection shows that A[{7;}] = S[p" + ¢5] is of the form of the
potential energy of a system of interacting charges, namely

AN = 3 3 e UG- ) - (12)

The Fourier transforms of the interaction potential, U(g), for case I and case
IT are found to be given by the following expressions:

1o (o _F (@a/2m)lay|
U@ =0 G a7 "

Ir = (21)2 . J+ (a,/27r)q§/[qy]
VD =0m) a2 /T

where J = Ej/hc. The result U}(¢ = 0) = 0 implies that only charge-
neutral configurations contribute to the partition function, i.e. 3 .e; = 0.
Of course, for a, = 0, both expressions given above are identical, and the
model shows the well known Berezinskii-Kosterlitz-Thouless® transition for
J ~ 1. In addition, it is clear from U’(§) that the long-distance logarithmic
interaction between charges is not modified by the dissipative contribution.
On the other hand, note that the main features (for long distances) of U¥!(§)
are described by the approximation*—¢

(14)

2 (J o,
o=t (5 ) - o

which shows, besides the isotropic logarithmic interaction, that there is an
anisotropic part, local in z and increasing logarithmically in y; i.e. charges on
the same superconducting grain interact logarithmically for different times,
which is the relevant result known from a single junction: The second part of
(15) is precisely the interaction obtained in Ref. 2 in the tight binding limit
J > 1 by the instanton technique. Note that the long distance behavior of the
potential can be obtained by the approximation ¢ ~ ¢V, i.e. by neglecting the
spin wave part ¢5. I emphasize that the expression (14) agrees with the one
obtained earlier*~® by use of the Villain transformation and discretization
of the time (i.e. y) variable. As mentioned above, the athors of Refs. 4-6,
however, disagree on the conclusions to be drawn from this result.
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4 Discussion

The difference between case I and case IT is due to the different order
of z- and y-derivatives; however, for the vortex part ¢, one finds

(0:8y — 8,0:] " =21 Y " e;6(F—7) , (16)
j
which is most easily confirmed by noting that

[(Vo"]s = 2mi Z €; (;qu_’;q_z)e_,;;.;’- . an

r q

But what is the correct interpretation, (7) or (8)7 A similar question arises
when including a nearest-neighbor capacitance, which adds the following
contribution to the action:

M . . M .
5 ;/dr ((pj - (pj_l)z ey fda:d’r (3,,4;:)2 : (18)

Recalling that ¢; is related to the voltage according to Josephson’s relation,
hgj = 2€V;, it seems that the interpretation given in (18) is the correct
one.” Similarly, it is plausible that the choice IT (see (8)), i.e. first writing
the dissipative part of the action in terms of the voltage, and then taking
the spatial continuum limit, leads to the correct answer.l® Of course, this
interpretation is supported by the agreement with the results obtained by
different techniques.*~¢
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