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Most high-Tc superconductors possess striking anisotropy properties, due to their
quasi-bidimensional lattice structure. Nevertheless, the anisotropic London theoryl-3 is
valid only if the coherence length & is much larger than any atomic distance. Recent low
temperature estimates for & (perpendicular to the layers) rather give & =~ 3-5 A in
YBayCu307 45, while the largest distance between Cu-O planes is d = 8 A. The situation
is even more striking in the Bi-Sr-Ca-Cu-O family where values as low as £ =~ 1-3 A
have been suggestedS, while d = 10 A. This naturally leads to a model of Josephson-
coupled superconducting planes?. In that case the cores of flux lines are drastically
affected by the lattice discreteness, for they can fit between the layers8. Such flux lines are
actually similar to those penetrating Josephson junctions. Obviously such vortices
encounter a lattice barrier, similar to Peierls-Nabarro barriers for dislocations, as they
move perpendicularly to the planes. This is a cause of strong intrinsic pinning and thus
responsible for intrinsic critical currents Je/y if the field is parallel to the layers. The free
energy of an undulated line can be written easily for small curvature: the kinetic part is
given by the orientation-dependant line energy 1-3 and the z-dependant core contribution
can simply be added phenomenologically®. One can thus write the free energy of an
clement of line ds=(dx,dz) making an angle Og with the z-axis as
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where tan O = dx/dz (see Fig. 1). yis the anisotropy ratio defined by y= (my/my)172, &
= (A2A )13 and € = (§2€ 1)1/3 are averaged penetration and coherence lengths and %,
= (WE)Y /3, I'(Bp) = (5in20p+y2c0s20B)1/2 ; o} < g represents the reduction of the
core energy when lying between layers. The value of oy is close to 0.5, thus the core

energy is roughly ten per cent of the total line energy if « = 102. With the layer separation

given by d, the critical current parallel to the layers and perpendicular to the field is easily
obtained from the barrier, equal to the modulation of the core energy, given by (1), i. e.

Je=0100y~1/3 / (4m)h)2d. Taking for instance for Y-Ba-Cu-O the values A = 2500 A |
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d=84A, v=35 and a; = 0.5 leads to Jc = 6.5. 107 A.cm'z. On the other hand Jc
should depend very sensitively on a small desorientation of flux lines with respect to the
layers, for the flux line would then take the shape of a soliton (kink) lattice (Fig. 1) and
the kinks can move very easily parallel to the layers?. With the same numerical values as
above, the energy and length of a single Sine-Gordon soliton (kink) are easily calculated,
using (1) for Bp = 90° and minimizing the line free energy, and are respectively given by
Ex=0.07¢V and Ly = 60A for YBaCuO (y=15) and Ex=0.62 eV and Lg = 825 A for

BiSrCaCuO, taking y = 55 as proposed by some authors10-

Let us now study the first flux penetration as a function of the field orientation.
The problem has been studied in the past, in the anisotropic London theory. The flux lines
prefer to be oriented close to the easy directions (here the layer directions), thus the
induction B is not parallel to the field H. Let us now include the core trapping and
calculate in low fields the Gibbs potential of a single line, given on an unit Iength along x'"
by

G=fdse(9B) —j dx' (H¢0/4n)cos (6-6p @

with €(0) defined by (1). All angles 8 (but not 6) are supposed to be close to 90° thus'
dz/dx =90 - 6g <<1. G can then be rewritten as
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with K = ($o/4nA)2 33 (Lnk;+0), 8 = (9o/4mh)2 y~13 oy, The core term acts like a
commensurate potential, the field imposing to the line angle a "misfit" q, given by
q=¢oHcos0/4nK. The minimization of the integral term with respect to z(x) gives rise to
the well-known Sine-Gordon soliton lattice. It shows a lock-in transition at a critical value

of the misfit q¢ = (4/m) (8/2K)/2. For q<q the lines enter parallel to the layers. The
critical angle for lock-in of vortices at H¢1 results from setting H=H¢1y, and q=q, i.e.
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With the previous numerical values, this yields O = 269, On the other hand, the
calculation of the equilibrium properties in higher fields H¢j<<H<<H¢) can be performed
by a generalization of the usual vortex lattice calculation. The result is 9
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where H* is of the order of H¢1. This result, together with the low field result, can be

represented on a phase diagram (H, Oy) (Fig. 2 ). The region of field orientations for
which the flux lines are trapped parallelely to the layers increases with the barrier height
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(measured by o) and with the anisotropy factor v, and decreases with the field intensity.
Typically, for fields of the order of 102 H¢1 and ¢tj = 0.5 the lock-in transition (dotted

line on Fig. 2) occurs at =870 if y=5 (YBaCuO) and 8,=759 if y=55 (BiSrCaCuO).

On the other hand, for H parallel but J perpendicular to the layers, i.e. for flux
line motion parallel to the layers, the quasi-absence of normal cores make the vortices
glide easily, being hardly pinned by defects. This could explain why the critical currents
for H parallel and J perpendicular are so low, even in single crystals6. The anisotropy of
the critical current for parallel fields is thus a very crucial question and has not been paid
much attention up to now.

One of the authors (D.F.) acknowledges Prof. J. Friedel for his interest in
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