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The transport properties and the nature of the breakdown of superconductivity in oxide
ceramics with “strong” intergrain coupling are discussed. As an alternative to the XY-
model which is not applicable to these materials, the “limiting interface” model is proposed.
The model is used to calculate the texturing dependence of the critical current density in
polycrystalline YBa;CuzO7_s-films. An extension of the limiting interface model allows for
the calculation of the current-voltage characteristic which is expected to contain interesting
information on the spatial structure of the superconducting-to-normal transition.

1. INTRODUCTION

The macroscopic current flow in polycrystalline oxide superconductors is determined
by the presence of weak links introduced into the material by the ceramic processing
technique. The superconductivity in these materials is the superposition of a strong
intragrain superconductivity and a weak intergrain superconductivity which establishes
the coherence in the ceramics and determines the transport and low field magnetic
properties of the sample. For the discussion of the mechanism of transport current
limitation, the ratio between the average grain size (a) and the ceramic London
penetration depth Acer is the critical parameter. This ratio is given by
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where ®, denotes the flux quantum, pcer is the effective permeability of the ceramic
[ 1,2, 3], and (jy) is the average intergrain critical current density. The phase ¢ of
the superconducting order parameter varies on the scale Ace;. Hence for 7> 1, ¢
can be assumed to be constant over a single grain; this limit is adequately described
by the XY-model [ 4, 5, 6]. The critical current in this case is determined by either
the depinning of macro (intergrain) vortices [ 7] , or by the “phase glass” transition
[6]. In this article we consider the opposite case of ceramics with strong intergrain
coupling (“good ceramics”), i.e., n < 1. In this case the phase ® varies strongly on
the scale of a grain and the XY-model does not apply. The topological excitations
are the Josephson vortices fitting into the grain boundaries. Their size is given by

the Josephson penetration depth A; = (c®,/1672)5;)!/2, where ) is the penetration
depth of the grains. The depinning of the Josephson vortices determines the critical
current of the ceramic sample. The analysis of experimental data in terms of an
improved critical state model shows that present ceramics (at least YBayCu307_s)
indeed belong to this strong intergrain coupling limit [ 8]. A first attempt to describe
this regime is the “limiting interface” (LI) model [ 9). The LI-model allows for the
calculation of the critical current of the ceramic from the knowledge of the critical
current across the single grain boundaries which in turn can be obtained either from
a model calculation or from experiments. In section 2 we describe the LI model and
apply it to the calculation of the a-axis texturing dependence of the critical current
in a c-axis oriented thin YBagCugOy_s-film. In section 3 the LI model is extended to
the calculation of the current-voltage (I-V) characteristic which is expected to exhibit
interesting features at low temperatures.

(received December 22, 1989)



265

2. THE LIMITING INTERFACE MODEL

The basic question answered by the LI-model is the following. Assume we know the
critical currents of the individual .grain boundaries (i.e., the currents at which the

Josephson vortices are depinned), what is the critical current I of the whole sample?
The critical current I is reached when there is an interface 4, transverse to the current
flow on which all junctions (grain boundaries) are critical [9]. Along 7. vortices will

start to flow across the entire sample, thus creating a finite voltage across v.. We call
e the limiting interface. In order fo obtain a mathematically well defined problem we
consider a 2-dimensional ceramic sample (thin film) consisting of square shaped grains
where the intergrain current i; across the I[-th grain is bounded by the critical current
iegt —iel S i Sy (see Fig. 1). In order to avoid charging we impose the continuity
equation: Y1, = 0 where n denotes the set of four boundaries of a given grain. The
maximal current through the sample is then given by I, = maxg; 3} Zye'y iy, where v

is an arbitrary interface separaling the current feeding contacts. I, can be calculated
exactly in several ways: (i) The above equations and inequalities constitute a linear

I ! I i2mn= 0
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Fig. 1: 2D example for the LI model. The square shaped grains are coupled by random

coupling strengths i.;, { = 1,...,2mn such that —ig1 < 4 < dcp. The current flow

is in the vertical direction (periodic boundary conditions). v denotes a transverse

interface. The limiting interface v, minimizes the functional I[y] = Ene ¥ Sen
optimization problem which can be solved by the simplex method [9]. Much more
suitable for the efficient treatment of large samples (up to ~200x200 grains) is the
direct determination of the limiting interface +¢, which is given by the minimization
of the functional Iy] = 2 ley tel» Where 7 runs over all transverse interfaces. The
variational problem is highly non-trivial due to its rich structure of local minima; this
renders any variational equation useless, since it would have many solutions, each
corresponding to a particular local minimum of I[y]. There are two ways out of this
problem: First, an efficient transfer operator method has been developed for the exact
calculation of v¢ and I[yc] in the two-dimensional case | 10, 11]. Second, although a
variational equation is of little help, a boundary value problem can be formulated, the
{unique) solution of which provides the limiting interface 4. and the critical current
ITve] [11]. This second approach is applicable to 3D problems, i.e., the calculation of
2D interfaces in bulk ceramics. .

What is the physical nature of the limiting interface 4.7 As the current through
the sample is driven beyond its critical value I, = I|y,], vortices begin: to flow along
7Ye and a finite voltage Vo = 2A/e (A = gap) appears across ¢, whereas the regions
on both sides of v, remain fully superconducting. This means that Yc is nothing but
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a long inhomogeneous (and curved) Josephson junction characterized by the critical
current I¢.

The quenching of the supercurrent by an external magnetic field By can be
described within the framework of the LI model just by introducing field dependent
intergrain critical currents i, )(Bext). The incorporation of self-field effects is more
involved and will be discussed elsewhere [ 12]. In thin films, however, self-field effects
are not important and the LI model in the form presented above is applicable.

As an application of the LI model we will discuss the a-axis texturing dependence of
the critical current density in a c-axis oriented thin YBagCuzO7_s-film. With the c-axes
orthogonal to the film plane, the orientation of the grains is completely characterized
by the angle ¢ of their a-axis with respect to a given reference direction. The texturing
is then described by a Gaussian probability distribution Py, (¢) ~ exp|—(¢/¢0)?]

for the angle ¢. ¢o = 0 describes perfect texturing, ¢o = oo completely untextured
material.
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Fig. 2: The a-axis texturing dependence in a c-axis oriented polycrystalline YBa;CuzOr_s-
film, calculated by the LI-model. The intergrain critical currents i.,y are taken from

the experiments of Dimos et al. [ 13]. The current is normalized to the intragrain
critical current.

The critical currents i are taken from measurements at bicrystals by Dimos et al.
(13]. Their results imply that the intergrain critical currents depend on the relative
orientational misfit of two neighboring grains v and o' ey = e |6y — ¢)]). For
a given realization of {¢,} we obtain the critical currents ic,1 allowing us to determine
the limiting path v and the critical current I, of the film. The numerical result for
the function I(¢o) is shown in Fig. 2. We find that the critical current in films with

randomly oriented a-axes is suppressed by a factor of ~ 1 /30 as compared with the

single crystal value. Only very strong texturing with ¢, ~ 10° leads to a considerable
improvement of I..

3. CURRENT-VOLTAGE CHARACTERISTIC

In this section the LI model is extended to describe the full I-V characteristic of the
ceramic. The LI model as it has been formulated in the last section, allows for the
calculation of the critical current of a macroscopic sample from the knowledge of the
critical currents of the individual grain boundaries. We now discuss the following,
more general question: Given the I-V characteristic of the individual grain boundaries,
what is the I-V characteristic of the whole sample? To solve this problem we adopt a
random resistor network (RRN) description of the ceramic superconductor. The grain
boundaries are Josephson weak links with the (idealized) characteristic given by

. 0, if [ig] < ey,
AVI(”) = {0'—1 iy, if |lI| 2> ic,lp (1)

n,l
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_ where AVj is the voltage difference between the two grains separated by the I-
th grain boundary, and the normal conductivity o, ; of the i-th grain boundary

is related to the critical current i.; via the Ambegaokar-Baratoff formula [ 14]:

il = &%Te:)-g'i tanh f—\ég‘%. Unfortunately the I-V characteristic (1) cannot be
incorporated into a RRN because of the infinite conductivity for |i;] < ic;. This
problem can be circumvented by introducing a fictitious finite but very large “super-
conductivity” o5, where “very large” means o > max;{oy,;}. The characteristic of
the [-th grain boundary is then given as follows: '

orteip il <iep

A - {v; i i il 2 iy @

As in the LI model we impose the continuity equation ). in(AV,) = 0, and, in

addition, the boundary condition V = 0 at the bottom of the network and V = Viop
at the top of the network (the current flows from the bottom to the top). This defines
an RRN problem. The I-V curve can be calculated by standard techniques. The

result is shown in Fig. 3. The most prominent feature of the I-V characteristic is its
step like structure (voltage jumps). Their physical interpretation is the following: The
step starting from zero-voltage occurs when vortices begin to move along the limiting
interface 7. as the current has reached its critical value. Increasing the current further,

A Viop V=Viop

Fig. 8: The current-voltage characteristic of a strongly coupled oxide ceramic, calculated by
the extended LI-model for an 8x 12-lattice. Voltage steps of the size 2A /e occur when-
ever a new “flux flow sheet” appears which is completely disconnected from those
which already exist. The flux flow sheet configuration corresponding to two of the
voltage steps are shown. The intergrain critical currents i.; are chosen according to
the data in Ref. [13] for a completely untextured sample. In our arbitrary units we
put o1 = i1, I = 1,...,192 (Ambegaokar-Baratoff ), and the fictitious large “super-
conductivity” o, is 20 times the maximal oy,;.

more and more interfaces for vortex flow open. We will call them “flux flow sheets”.
The coherence across the flux flow sheets is destroyed, whereas it persists between the
sheets: the superconductor is “broken up” into several coherent subdomains bounded
by the flux flow sheets. It can be shown that a voltage step in the I-V curve occurs
only when a new flux flow sheet is formed which is completely disconnected from those
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which already exist. If a new sheet shares at least one grain boundary, it leads only to
a change in the slope of the I-V curve. Hence the I-V curve contains information on
the spatial structure of the breakdown of superconductivity in the ceramic.

Experimentally the steps are not observed al T=77 K [3]. This is probably due
to strong flux creep at these high temperatures, which are smoothening the step
structure. The steps have been observed, however, in “classical” granular Al and In
films at T=4.2 K and have been observed to smooth out with raising temperature |
15]. It would therefore be very interesting to measure the I-V characteristics of the
oxide ceramics at low temperatures.

In summary, we have presented the limiting interface (L1) model for oxide ceramics
with strong intergrain coupling, for which the X Y-type models are not applicable.
The extension of the LI-model to finite voltages shows that the current-voltage
characteristic contains interesting information on the structure of the S-N transition.
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